

Luftqualitätsüberwachung in Niedersachsen

PM_{2,5}-/ PM₁₀-Vergleichsmessungen zwischen automatischen Messungen und Referenzmessverfahren im Jahr 2020

Festlegung der Korrekturfunktionen 2020

Zentrale Unterstützungsstelle Luftreinhaltung, Lärm, Gefahrstoffe und Störfallvorsorge – ZUS LLGS

Titelbilder: Low-Volume-Sampler (links), Staubfilterproben auf Wägemagazin (mittig), Wägeautomat für Staubfilterproben (rechts),
Bericht Nr. 42-21-002
Stand: 03.03.2021
Durchführung:

Staatliches Gewerbeaufsichtsamt Hildesheim

Zentrale Unterstützungsstelle Luftreinhaltung, Lärm, Gefahrstoffe und Störfallvorsorge – ZUS LLGS

Dezernat 42 und Dezernat 43

Goslarsche Straße 3, 31134 Hildesheim

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-19257-02-00

Festlegung der Korrekturfunktionen für das Kalenderjahr 2020 und der vorläufigen Korrekturfunktionen für 2021 für $PM_{2,5}$ und PM_{10}

Inhalt

1	Einle	eitung .		3
2	Grur	ndlager	n für die Festlegung der Korrekturfunktionen	3
3			messungen in 2020	
4	Erge	bnisse	und Festlegung der Korrekturfunktionen	4
	4.1		turfunktion für die PM _{2,5} -Messung mittels FIDAS 200E	
	4.2		turfunktion für die PM ₁₀ -Messung mittels SHARP 5030	
	4.3	Korrek	cturfunktion für die PM ₁₀ -Messung mittels FIDAS 200E (nicht für die EU terstattung)	
		4.3.1	-,	
		4.3.2		
Anł	nang	A – Erg	ebnisse der PM _{2,5} -Vergleichsmessungen (LVS vs. FIDAS 200E)	5
Anł	nang	B – Erg	gebnisse der PM ₁₀ -Vergleichsmessungen (LVS vs. SHARP 5030)	6
Anł	nang	C –	Ergebnisse der PM ₁₀ -Vergleichsmessungen	
			(LVS vs. FIDAS 200E, Verkehrsmessstationen)	7
Anł	nang	D –	Ergebnisse der PM ₁₀ -Vergleichsmessungen	
			(LVS vs. FIDAS 200E, andere Messstationen)	8

1 Einleitung

Im Messnetz des LÜN werden neben gravimetrischen Referenzmessverfahren aus Kostengründen und zur aktuellen Information der Öffentlichkeit flächendeckend automatische, kontinuierlich messende Messgeräte für die Feinstaubmessung eingesetzt. Bei diesen Geräten können ohne Kalibrierung Abweichungen vom Referenzmessverfahren auftreten.

Daher kann es notwendig sein, die kontinuierlich erhobenen Daten durch Korrekturfunktionen auf das Referenzverfahren zu beziehen. Aus diesem Grund werden an ausgewählten Messstationen automatische Messgeräte und Referenzmessgeräte parallel betrieben. Zur Angleichung der Daten an das Referenzmessverfahren wird wie folgt vorgegangen. In einem ersten Schritt werden aktuell auflaufende Daten der automatischen Messgeräte mit der Korrekturfunktion des vorangegangenen Jahres vorläufig korrigiert. In einem zweiten Schritt werden die Feinstaubwerte nach Ablauf eines Kalenderjahres auf Basis der zum jeweiligen Kalenderjahr ermittelten Korrekturfunktion neu bewertet. Endgültig validierte Feinstaubwerte liegen somit immer erst zu Beginn des folgenden Kalenderjahres vor.

2 Grundlagen für die Festlegung der Korrekturfunktionen

Folgende Aspekte wurden bei der Festlegung der Korrekturfunktionen berücksichtigt:

- Die Äquivalenz gravimetrischer Messverfahren ist im Rahmen der STIMES-Vergleichsmessungen im Jahr 2003 für PM₁₀, in den Jahren 2008/2009 für PM_{2,5} sowie im Jahr 2019 für PM_{2,5} und PM₁₀ nachgewiesen worden.
- Die Äquivalenz automatischer Messverfahren ist im Rahmen der STIMES-Vergleichsmessungen in den Jahren 2008/2009 für PM_{2,5} und im Jahr 2019 für PM_{2,5} und PM₁₀ in nachgewiesen worden.
- Als Referenzmessverfahren kommen Staubsammler mit gravimetrischer Staubmassenbestimmung zum Einsatz. Zur Unterscheidung von PM₁₀ und PM_{2,5} werden bei der Probenahme fraktionierende Vorabscheider verwendet.
- Auf der Basis von Vergleichsmessungen werden jeweils 24-stündige Probenahmen zwischen Referenzmess- und automatischen Messverfahren über den Zeitraum eines Kalenderjahres ausgewertet.
- Zum Nachweis der Äquivalenz automatischer Messverfahren muss ein funktionaler Zusammenhang zum Referenzmessverfahren gegeben sein. In diesem Fall dürfen, um die gesetzlichen Anforderungen zu erfüllen, Messwerte entsprechend korrigiert werden.
- Anforderungen zum Nachweis der Äquivalenz sind in DIN EN 12341 (für PM₁₀ und PM_{2,5}), der DIN EN 16450 sowie in dem Report "Demonstration of equivalence of Ambient Air Monitoring Methods" festgelegt.
- Bei der Äquivalenzprüfung und der Ermittlung der Korrekturfunktion ist auf Basis der o.g. Quellen vorzugehen.

3 Vergleichsmessungen in 2020

Im Jahr 2020 wurden für die Vergleichsmessungen zur Kalibrierung des automatischen Messverfahrens FIDAS 200E für PM_{2,5} und SHARP 5030 für PM₁₀ Low-Volume-Sampler eingesetzt. Für die Vergleichsmessungen kamen Quarzfaserfilter zum Einsatz, die vor der vorgeschriebenen Äquilibrierung etwa zwei Wochen in einer gesättigten Wasserdampfatmosphäre gelagert wurden. Die Auswertungen, insbesondere die der gravimetrischen Analysen, wurden explizit nach den Anforderungen der DIN EN12341 durchgeführt.

PM₁₀-Vergleichsmessungen wurden im Jahr 2020 an neun Messstationen durchgeführt (5 Verkehrsmessstationen, 2 Industriemessstationen, 2 Hintergrundmessstationen), PM_{2,5}-Vergleichmessungen an vier Messstationen (1 Verkehrsmessstation, 1 Industriemessstation, 2 Hintergrundmessstation). An einem Teil der Vergleichsstandorte erfolgte zu Jahresbeginn zunächst noch eine tägliche Probenahme. Mit Beginn der Corona-Pandemie wurde der Probenahmezyklus jedoch generell auf zweitägig umgestellt, um die Anzahl der Probenahmefahrten zu reduzieren.

4 Ergebnisse und Festlegung der Korrekturfunktionen

Zusammenfassend lassen sich folgende Punkte festhalten:

4.1 Korrekturfunktion für die PM_{2.5}-Messung mittels FIDAS 200E

- Die Bestimmung der Korrekturfunktion für die PM_{2,5}-Messung mittels FIDAS-Geräte basiert auf Vergleichsmessungen an vier LÜN-Standorten (s. Anhang A).
- Für die PM_{2,5}-Rohwerte des FIDAS 200E wurde folgende allgemeine Korrekturfunktion ermittelt:

FIDAS-PM2,5
$$_{\text{endgültig}}$$
 (µg/m³) = 0,8837 * PM2,5 $_{\text{roh}}$ (µg/m³) – 0,0670 µg/m³

• Nach Anwendung der Korrekturfunktion ergab sich für PM_{2,5}-Tagesmittelwerte eine **erweiterte Messunsicherheit** am Wert von 30 μg/m³ **von 9,4 %.**

4.2 Korrekturfunktion für die PM₁₀-Messung mittels SHARP 5030

- Die Bestimmung der Korrekturfunktion für die PM₁₀-Messung mittels SHARP-Geräte basiert auf Vergleichsmessungen an neun LÜN-Standorten (s. Anhang B).
- Für die PM₁₀-Rohwerte des SHARP 5030 wurde folgende allgemeine Korrekturfunktion ermittelt:

```
SHARP-PM10 _{\text{endgültig}} (µg/m³) = 0,9303 * PM10_{\text{roh}} (µg/m³) + 0,6073 µg/m³
```

• Nach Anwendung der Korrekturfunktion ergab sich für PM₁₀-Tagesmittelwerte eine **erweiterte Messunsicherheit** am Wert von 50 μg/m³ **von 9,1 %.**

4.3 Korrekturfunktion für die PM₁₀-Messung mittels FIDAS 200E (nicht für die EU Berichterstattung)

Die PM₁₀-Vergleichsmessungen zeigen, dass in 2020 eine Differenzierung hinsichtlich der Stationskategorien "Verkehrsmessstation" und "andere Messstation" erforderlich ist, da die Anwendung einer allgemeinen, vom Stationstyp unabhängigen Funktion nicht überall zur Einhaltung des Datenqualitätsziels für die erweiterte Messunsicherheit führt.

4.3.1 Korrekturfunktion für die PM₁₀-Messung mittels FIDAS 200E für Verkehrsmessstationen

- Die Bestimmung der Korrekturfunktion für die PM₁₀-Messung mittels FIDAS-Geräte basiert auf Vergleichsmessungen an fünf LÜN-Standorten (s. Anhang C).
- Für die PM₁₀-Rohwerte des FIDAS 200E wurde folgende allgemeine Korrekturfunktion ermittelt:

```
FIDAS-PM10 <sub>Verkehr</sub>, endgültig (μg/m³) = 1,0104* PM10<sub>Verkehr</sub>, roh (μg/m³) + 1,1922 μg/m³
```

• Nach Anwendung der Korrekturfunktion ergab sich für PM₁₀-Tagesmittelwerte eine **erweiterte Messunsicherheit** am Wert von 50 μg/m³ **von 9,5 %.**

4.3.2 Korrekturfunktion für die PM₁₀-Messung mittels FIDAS 200E für andere Messstationen

- Die Bestimmung der Korrekturfunktion für die PM₁₀-Messung mittels FIDAS-Geräte basiert auf Vergleichsmessungen an vier LÜN-Standorten (s. Anhang D).
- Für die PM₁₀-Rohwerte des FIDAS 200E wurde folgende allgemeine Korrekturfunktion ermittelt:

```
FIDAS-PM10 andere, endgültig (\mu g/m^3) = 0,8620* PM10 andere, roh (\mu g/m^3) + 0,7409 \mu g/m^3
```

• Nach Anwendung der Korrekturfunktion ergab sich für PM₁₀-Tagesmittelwerte eine **erweiterte Messunsicherheit** am Wert von 50 μg/m³ **von 6,2 %.**

Die einzelnen Kenngrößen der Vergleichsmessungen sind den Anhängen A bis D zu entnehmen.

Anhang A – Ergebnisse der PM_{2,5}-Vergleichsmessungen (LVS vs. FIDAS 200E)

PM2.5-Vergleichsmessungen mit dem DERENDA PNS 18/24 T3,1 zur Kalibrierung der Ergebnisse der FIDAS 200-Monitore im LÜN - Kalenderjahr 2020

		HRSW	OGCC	OKCC	OKVT	SROO	Gesamt-
		tägl.	zweitgl.	tägl.	zweitgl.	zweitgl.	daton
	Rohdaten 2020	Derenda	Derenda	Derenda	Derenda	Derenda	
1	Anzahl Datensätze insgesamt:	220	24	217	169	174	804
2	Datenverfügbarkeit (%):	96,5%	13,1%	95,2%	92,3%	95,1%	78,4%
			,				Ortho Reg.
3	Orthogonale Regression (Steigung):	0,8707	0,9015	0,8818	0,8927	0,8466	0,8837
4	Orthogonale Regression (Achsenabschnitt):	-0,1827	-0,1620	-0,5258	0,6962	0,2961	-0,0670
5	5 Bestimmtheitsmaß (r²):		0,95	0,93	0,88	0,92	0,92
	Daten 2019 zum Vergleich	Derenda	Derenda	Derenda	Derenda	Derenda	Ortho Reg.
6	Orthogonale Regression (Steigung):	0,8889		0,9332	0,8692	0,8719	0,8956
7	Orthogonale Regression (Achsenabschnitt):	-0,3256		-0,6413	0,4638	0,2379	-0,2974
8	Bestimmtheitsmaß (r²):	0,95		0,94	0,95	0,94	0,95
	Datenvergleich 2020	HRSW	OGCC	OKCC	OKVT	SROO	Gesamt
9	Jahresmittelwert PM _{2.5} (Gravimetrie) (μg/m³) :	7,6	6,3	7,5	9,8	7,4	7,9
10	Jahresmittelwert PM2.5 (FIDAS-Rohdaten) (μg/m³):	8,9	7,2	9,1	10,1	8,3	9,1
11	Jahresmittelwert FIDAS (XPM2.5) berechnet s. o. :	7,8	6,3	8,0	8,9	7,3	7,9
12	Abweichung JMW bei FIDAS-Rohdaten (%):	17,1%	14,3%	21,3%	3,1%	12,2%	
13	Abweichung JMW bei kalibrierten Daten (%) : (f=0,8837x - 0,0670) orthogonal s. o.)	2,6%	0,0	6,7%	-9,2%	-1,4%	

(f=0,8837x - 0,0670) orthogonal s. o.)

Bewertung

 $Messunsicherheit - Tagesmittelwertbezug \ 30 \ \mu g/m^3 \ (0.5 \ \mu g/m^3 \ Standardmessunsicherheit \ des \ Referenzmessverfahrens)$

			HRSW	OGCC	OKCC	OKVT	SROO	Gesamt
			Derenda	Derenda	Derenda	Derenda	Derenda	
	14	erw. Unsicherheit FIDAS 200 (PM2.5) Rohdaten(%) :	32,2	24,8	32,1	22,8	35,5	28,9
П	15	erw. Unsicherheit FIDAS 200 (XPM2.5) berechnet (%):	8,0	8,9	8,4	13,8	10,7	9,4
		(f=0,8837x - 0,0670) orthogonal s. o.)				•		

14,3

...

Anhang B – Ergebnisse der PM₁₀-Vergleichsmessungen (LVS vs. SHARP 5030)

PM10-Vergleichsmessungen mit dem DERENDA PNS 18/24 T3,1 zur Kalibrierung der Ergebnisse der SHARP 5030-Monitore im LÜN - Kalenderjahr 2020

		BLWW zweitgl.	GNVS tägl.	HIVU tägl.	HRVS tägl.	OGCC tägl.	OKVT tägl.	OLVT tägl.	SROO zweitgl.	WNCC zweitgl.	Gesamt- daten
	Rohdaten 2020	Derenda	Derenda								
1	Anzahl Datensätze insgesamt:	156	227	225	222	216	213	223	176	148	1806
2	Datenverfügbarkeit (%):	85%	100%	99%	97%	95%	93%	98%	96%	81%	94%
											Ortho Reg.
3	Orthogonale Regression (Steigung (b)):	0,8794	0,9234	0,9229	0,8788	0,9698	0,9682	0,8791	0,9864	0,9794	0,9303
4	Orthogonale Regression (Achsenabschnitt (a)):	0,6849	0,2948	1,1008	2,2623	-0,6300	1,0367	1,3436	0,0710	-0,8565	0,6073
5	Bestimmtheitsmaß (r²):	0,88	0,92	0,92	0,96	0,90	0,88	0,92	0,87	0,82	0,92
	Daten 2019 zum Vergleich										Ortho Reg.
6	Orthogonale Regression (Steigung (b)):	0,9186	1,0319	0,987	0,9161	0,9622	0,9717	0,9447	1,0817	1,09	0,9895
7	Orthogonale Regression (Achsenabschnitt (a)):	0,2786	-0,6798	-0,2031	0,7843	-0,8315	0,6027	0,8609	-0,2896	-2,2671	-0,2552
8	Bestimmtheitsmaß (r²):	0,92	0,89	0,93	0,91	0,92	0,92	0,92	0,89	0,89	0,91
	Datenvergleich 2020	BLWW	GNVS	HIVU	HRVS	OGCC	OKVT	OLVT	SROO	WNCC	Gesamt
9	Jahresmittelwert PM ₁₀ (Gravimetrie) (μg/m³) :	13,2	16,3	14,7	16,8	9,5	17,8	15,4	12,2	11,0	14,3
	Jahresmittelwerte PM ₁₀ (SHARP 5030-Rohdaten) (µg/m³):	14,2	17,3	14,7	16,6	10,5	17,4	16,0	12,3	12,1	14,7

Abweichung JMW bei kalibrierten Daten (%) s. o. : (f=0,9303x+0,6073) orthogonal s. o.

Jahresmittelwert SHARP 5030 (XPM₁₀) berechnet s. o. :

Abweichung JMW bei SHARP 5030-Rohdaten (%):

Bewertung 2020

13

 $Messunsicherheit - Tagesmittelwertbezug \ 50 \ \mu g/m^3 \ (0.0 \ \mu g/m^3 \ Standardmessunsicherheit \ des \ Referenzmessverfahrens)$

13,8

7,6%

4,5%

16,7

6,1%

2,5%

			BLWW	GNVS	HIVU	HRVS	OGCC	OKVT	OLVT	SROO	WNCC	Gesamt
	14	erw. Unsicherheit SHARP 5030 (PM $_{10}$) Rohdaten(%) :	26,1	18,2	14,8	20,7	11,6	10,7	23,2	8,7	11,7	15,8
Г	15	erw. Unsicherheit SHARP 5030 (XPM ₁₀) berechnet (%) :	13,7	9,4	8,2	11,5	7,9	13,9	11,5	12,7	9,7	9,1
_		(f=0.9303x+0.6073) orthogonal s. o.										

14,3

0,0%

-2,7%

16,0

-1,2%

-4,8%

10,3

10,5%

8,4%

16,8

-2,2%

-5,6%

15,5

3,9%

12,0

0,8%

11,8

10,0%

Anhang C – Ergebnisse der PM₁₀-Vergleichsmessungen (LVS vs. FIDAS 200E, Verkehrsmessstationen)

PM10-Vergleichsmessungen mit dem DERENDA PNS 18/24 T3,1 zur Kalibrierung der Ergebnisse der FIDAS 200-Monitore im LÜN - Kalenderjahr 2020

		9				,	
		GNVS	HIVU	HRVS	OKVT	OLVT	Verkehr
		tägl.	tägl.	tägl.	tägl.	tägl.	verkenr
	Rohdaten 2020	Derenda	Derenda	Derenda	Derenda	Derenda	
1	Anzahl Datensätze insgesamt:	228	225	222	213	223	1111
2	Datenverfügbarkeit (%):	100%	99%	97%	93%	98%	97%
_				•	-	•	Ortho Reg.
3	Orthogonale Regression (Steigung (b)):	1,0049	1,0278	0,9756	1,0035	1,0218	1,0104
4	Orthogonale Regression (Achsenabschnitt (a)):	0,6817	0,6300	2,1356	1,9222	0,9281	1,1922
5	Bestimmtheitsmaß (r²):	0,91	0,90	0,87	0,88	0,91	0,89
	Daten 2019 zum Vergleich						
	•						Ortho Reg.
6	Orthogonale Regression (Steigung (b)):	"	0,9168	0,9790	0,9183	')	0,9504
7	Orthogonale Regression (Achsenabschnitt (a)):	")	1,6947	2,0749	3,235	*)	1,5711
8	Bestimmtheitsmaß (r²):	")	0,96	0,93	0,93	*)	0,93
	•	*) Nach Umstel	lung in 2019, Ar	zahl der Datenp	aare zu gering für aussagekräf	tigen Vergleich	
	Datenvergleich 2020	GNVS	HIVU	HRVS	OKVT	OLVT	Gesamt
9	Jahresmittelwert PM ₁₀ (Gravimetrie) (μg/m³) :	16,3	14,7	16,1	17,6	15,4	16,0
10	Jahresmittelwerte PM10 (FIDAS 200-Rohdaten) (μg/m³):	15,5	13,7	14,3	15,7	14,2	14,7
11	Jahresmittelwert FIDAS 200 (XPM10) berechnet s. o. :	16,9	15,0	15,6	17,0	15,5	16,0
12	Abweichung JMW bei FIDAS 200-Rohdaten (%) :	-4,9%	-6,8%	-11,2%	-10,8%	-7,8%	
13	Abweichung JMW bei kalibrierten Daten (%) s. o. :	3,7%	2,0%	-3,1%	-3,4%	0,6%	

(f=1,0104x+1,1922) orthogonal s

Bewertung 2020

 $Messunsicherheit - Tagesmittelwertbezug \ 50 \ \mu g/m^3 \ (0.0 \ \mu g/m^3 \ Standardmessunsicherheit \ des \ Referenzmessverfahrens)$

		BLWW	GNVS	HIVU	HRVS	OGCC	OKVT	OLVT	SROO	WNCC	Gesamt
14	erw. Unsicherheit FIDAS 200 (PM10) Rohdaten(%):		10,1	11,9	10,4		13,0	11,3			11,6
15	erw. Unsicherheit FIDAS 200 (XPM10) berechnet (%) :		10,0	9,2	10,4		10,2	8,2			9,5
	(f=1 0104v+1 1922) orthogonal s. o.										

Anhang D – Ergebnisse der PM₁₀-Vergleichsmessungen (LVS vs. FIDAS 200E, andere Messstationen)

PM10-Vergleichsmessungen mit dem DERENDA PNS 18/24 T3,1 zur Kalibrierung der Ergebnisse der FIDAS 200-Monitore im LÜN - Kalenderjahr 2020

		BLWW				OGCC			SROO	WNCC	Hintergrun
		zweitgl.				zweitgl.			zweitgl.	zweitgl.	d
	Rohdaten 2020	Derenda				Derenda			Derenda	Derenda	
1	Anzahl Datensätze insgesamt:	157				51			178	150	536
2	Datenverfügbarkeit (%):	86%				22%			97%	82%	72%
	•						•				Ortho Reg.
3	Orthogonale Regression (Steigung (b)):	0,8461				0,8822			0,8601	0,8923	0,8620
4	Orthogonale Regression (Achsenabschnitt (a)):	0,6182				0,2659			1,2119	0,3075	0,7409
5	Bestimmtheitsmaß (r²):	0,93				0,97			0,92	0,89	0,92
	Daten 2019 zum Vergleich										Ortho Reg.
6	Orthogonale Regression (Steigung (b)):	0,8762				^{*)}			0,8992	*)	0,9504
7	Orthogonale Regression (Achsenabschnitt (a)):	0,1500				^{*)}			1,0625	")	1,5711
8	Bestimmtheitsmaß (r²):	0,93				")			0,95	*)	0,93
	•		*) Nach Umstellung in 2019, Anzahl der Datenpaare zu gering für aussagekräftigen Vergleich								
	Datenvergleich 2020	BLWW				OGCC			SROO	WNCC	Gesamt
9	Jahresmittelwert PM ₁₀ (Gravimetrie) (μg/m³) :	13,2				10,1			12,2	11,1	12,0
10	Jahresmittelwerte PM10 (FIDAS 200-Rohdaten) (µg/m²):	14,8				11,1			12,8	12,0	13,0
11	Jahresmittelwert FIDAS 200 (XPM10) berechnet s. o. :	13,5				10,3			11,8	11,1	12,0
12	Abweichung JMW bei FIDAS 200-Rohdaten (%) :	12,1%				9,9%			4,9%	8,1%	
13	Abweichung JMW bei kalibrierten Daten (%) s. o. :	2,3%				2,0%			-3,3%	0,0%	
	(f=0,8620x+0,7409) orthogonal s. o.										

Bewertung 2020

 $Messunsicherheit - Tagesmittelwertbezug \ 50 \ \mu g/m^3 \ (0,0 \ \mu g/m^3 \ Standardmessunsicherheit \ des \ Referenzmessverfahrens)$

			BLWW		OGCC		SROO	WNCC	Gesamt	
_	14	erw. Unsicherheit FIDAS 200 (PM10) Rohdaten(%) :	34,3		25,9		27,9	23,9	29,5	
Г	15	erw. Unsicherheit FIDAS 200 (XPM10) berechnet (%):	7,1		4,9		6,6	8,8	6,2	
		(f=0.8620x+0.7409) orthogonal s. o.								