

Luftqualitätsüberwachung in Niedersachsen

Vergleichsmessungen zwischen NO₂-Passivsammlern und NO₂-Referenzmessverfahren im Jahr 2017

Zentrale Unterstützungsstelle Luftreinhaltung, Lärm und Gefahrstoffe - ZUS LLG

Titelbilder: NO₂-Passivsammler, zerlegt (links), Grafik aus EU-Äquivalenzsheet (mittig), NO₂-Passivsammler, exponiert (rechts)

Bericht Nr. 42-18-001

Stand: 22.01.2018

Durchführung:

Staatliches Gewerbeaufsichtsamt Hildesheim Zentrale Unterstützungsstelle Luftreinhaltung, Lärm und Gefahrstoffe - ZUS LLG, Dezernat 42, Dezernat 43 Goslarsche Straße 3, 31134 Hildesheim

Festlegung der Kalibrierfunktion der PALMES-Passivsammler zur Stickstoffdioxid-Bestimmung für das Jahr 2017

Inhalt

1	Kontext	. 4
2	Datenverfügbarkeit	. 4
	Kalibrierfunktion	
4	Messunsicherheit	. 5
5	Nachweisgrenze	6

1 Kontext

In der ZUS LLG werden NO_2 -Passivsammler (PALMES) nach DIN EN 16339 zusätzlich zur aktiven Bestimmung mittels Chemilumineszenz-Messgeräte (Referenzverfahren nach DIN EN 14211) zur Ermittlung der jährlichen mittleren NO_2 -Konzentration eingesetzt. Dabei werden die Sammler jeweils für etwa 14 Tage exponiert.

Im Jahr 2017 konnten an den Verkehrsmessstationen in Braunschweig (BGVT), Hannover (HRVS) und Osnabrück (OKVT) sowie an den städtischen Hintergrundstation Hannover (HRSW) und Osnabrück (OKCC) insgesamt 115 Messdatenpaare zum Vergleich mit dem Chemilumineszenz-Referenzmessverfahren in Anlehnung an den EU-Leitfaden "Guidance for the Demonstration of Equivalence of Ambient Air Monitoring Methods" ausgewertet werden (jeweils Halbmonatsproben). Zur Bestimmung der Messunsicherheit wurde u. a. ein seitens der EU-Kommmission veröffentlichtes Excel-Sheet verwendet.

Ziel der Vergleichsmessungen war es, festzustellen, in wieweit die Messverfahren zu gleichwertigen Ergebnissen führen. Sollten Unterschiede auftreten, wäre zu prüfen, ob und in welchem Umfang einen nachträgliche Kalibrierung der Passivsammler durchgeführt werden kann.

Zur Einordnung der NO₂-Passivsammler-Messungen wurden die orts- und zeitgleichen Messergebnisse an den LÜN-Stationen in Anlehnung an die Luftqualitätsrichtlinie 2008/50/EG hinsichtlich der Datenqualitätsziele, Datenverfügbarkeit und Messunsicherheit bewertet.

2 Datenverfügbarkeit

Im Jahr 2017 gab es keinen Probenverlust im Feld. Die Validierung der Daten ergab fünf Ausreißerpaare an den Hintergrundstationen HRSW bzw. OKCC, welche von den Berechnungen ausgeschlossen wurden. Die letztlich 115 verfügbaren Ergebnisse der Passivsammler wurden den Ergebnissen des Referenzmessverfahrens nach DIN EN 14211 tabellarisch gegenübergestellt. Zur Berechnung der Kalibrierfunktion wurden die Datenpaare aller Messstellen zusammengefasst.

3 Kalibrierfunktion

Folgende Kalibrierfunktion wurde mittels orthogonaler Regression ermittelt:

Passiv_{kal} = 0.894·Passiv_{roh} + $3.546 \mu g/m^3$

Dabei bedeutet:

Passiv_{kal}: Kalibrierter Messwert des NO₂-Passivsammlers in μg/m³ Passiv_{roh}: Unkalibrierter Messwert des NO₂-Passivsammlers in μg/m³

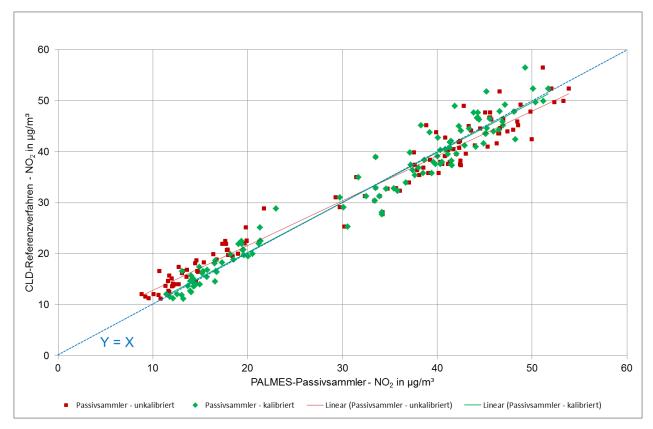


Abb. 1: Vergleich unkalibrierter und kalibrierter NO2-Passivsammlerdaten mit dem Referenzverfahren

4 Messunsicherheit

Nach der Kalibrierung der NO₂-Passivsammler-Messwerte wird für die Halbmonatswerte gegenüber der Chemilumineszenz als Referenzmessverfahren eine erweiterte Messunsicherheit von 13,4 % in Bezug auf den Grenzwert für den Jahresmittelwert (40 µg/m³) erreicht (s. Abb. 2).

Zur konservativen Abschätzung wurde bei den Berechnungen für die Standardmessunsicherheit des Referenzmessverfahrens 0 µg/m³ für die between-sampler-uncertainty angesetzt. Da eine between-sampler-uncertainty der Referenzgeräte größer 0 µg/m³ zugunsten der Messunsicherheit der Kandidatenmethode in die Berechnung eingehen würde, stellt die hier vorgenommene Abschätzung für die erweiterte Messunsicherheit eine worst-case-Abschätzung dar.

Kalibrierte Daten				
Regression	1,002y + -0,07	7		
Regression (i=0)	1y]		
N	115	n		
Outliers	2	n		
Outliers	2%	%		
Mean CM	31,6	µg/m³		
Mean RM	31,6	µg/m³		
Number of RM > 0.5LV	81	n		
Number of RM > LV	38	n		
REGRESSION R	ESULTS (RAV	/)		
Slope b	0,998			
Uncertainty of b	0,019			
Intercept a	0,077			
Uncertainty of a	0,660			
r^2	0,958			
Slope b forced trough origin	1,000	significant		
Uncertainty of b (forced)	0,0073			
EQUIVALENCE TEST (RAW)				
Uncertainty of calibration	1,02	µg/m³		
Uncertainty of calibration (forced)	0,29	µg/m³		
Random term	2,67	µg/m³		
Additional uncertainty (optional)	0,00	µg/m³		
Bias at LV	-0,02	µg/m³		
Combined uncertainty	2,67	µg/m³		
Expanded relative uncertainty	13,4%	pass		
Ref sampler uncertainty	0,80	µg/m³		
Limit value	40	μg/m³		

Abb. 2: Erweiterte Messunsicherheit für die kalibrierten NO2-Passivsammlerdaten des Jahres 2017

Damit halten bereits die Halbmonatswerte das Datenqualitätsziel für die erweiterte Messunsicherheit von 15 % für ortsfeste Messungen im Vergleich zum Referenzmessverfahren ein. Werden Halbmonatsergebnisse zu einem Jahresmittelwert zusammengefasst, wird der zufällige Beitrag zur Messunsicherheit des Jahresmittelwertes der Passivsammler beim Vergleich mit dem Referenzmessverfahren stark reduziert. Aus diesem Grund wird das Qualitätsziel der erweiterten Messunsicherheit von 15 % für ortsfeste Messungen mit Passivsammlern in Bezug auf den Jahresmittelwert eingehalten.

5 Nachweisgrenze

Die Nachweisgrenze für die etwa über zwei Wochen exponierten NO₂-Passivsammler wurde aus den Analyseergebnissen der Feldblindwertproben ermittelt.

NWG =
$$y_B + 3 \cdot s_B$$

NWG: Nachweisgrenze

y_B: Mittelwert der Feldblindwerte

s_B: Standardabweichung der Feldblindwerte

Für 2017 ergibt sich demnach eine Nachweisgrenze von 1,4 μg/m³.